Properties

Label 630.j
Number of curves $4$
Conductor $630$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 630.j have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 630.j do not have complex multiplication.

Modular form 630.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{5} + q^{7} + q^{8} + q^{10} + 2 q^{13} + q^{14} + q^{16} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 630.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
630.j1 630h3 \([1, -1, 1, -947, -10961]\) \(4767078987/6860\) \(135025380\) \([2]\) \(288\) \(0.46251\)  
630.j2 630h4 \([1, -1, 1, -677, -17549]\) \(-1740992427/5882450\) \(-115784263350\) \([2]\) \(576\) \(0.80908\)  
630.j3 630h1 \([1, -1, 1, -47, 119]\) \(416832723/56000\) \(1512000\) \([6]\) \(96\) \(-0.086795\) \(\Gamma_0(N)\)-optimal
630.j4 630h2 \([1, -1, 1, 73, 551]\) \(1613964717/6125000\) \(-165375000\) \([6]\) \(192\) \(0.25978\)