Show commands for:
SageMath
sage: E = EllipticCurve("i1")
sage: E.isogeny_class()
Elliptic curves in class 630.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
630.i1 | 630j3 | [1, -1, 1, -3362, -74181] | [2] | 512 | |
630.i2 | 630j2 | [1, -1, 1, -212, -1101] | [2, 2] | 256 | |
630.i3 | 630j1 | [1, -1, 1, -32, 51] | [4] | 128 | \(\Gamma_0(N)\)-optimal |
630.i4 | 630j4 | [1, -1, 1, 58, -3909] | [2] | 512 |
Rank
sage: E.rank()
The elliptic curves in class 630.i have rank \(0\).
Complex multiplication
The elliptic curves in class 630.i do not have complex multiplication.Modular form 630.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.