# Properties

 Label 63.a6 Conductor $63$ Discriminant $-45927$ j-invariant $$\frac{103823}{63}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2+xy=x^3-x^2+9x$$ y^2+xy=x^3-x^2+9x (homogenize, simplify) $$y^2z+xyz=x^3-x^2z+9xz^2$$ y^2z+xyz=x^3-x^2z+9xz^2 (dehomogenize, simplify) $$y^2=x^3+141x+142$$ y^2=x^3+141x+142 (homogenize, minimize)

sage: E = EllipticCurve([1, -1, 0, 9, 0])

gp: E = ellinit([1, -1, 0, 9, 0])

magma: E := EllipticCurve([1, -1, 0, 9, 0]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(0, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(0, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$63$$ = $3^{2} \cdot 7$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-45927$ = $-1 \cdot 3^{8} \cdot 7$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{103823}{63}$$ = $3^{-2} \cdot 7^{-1} \cdot 47^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-0.41620924311492334766995970906\dots$ Stable Faltings height: $-0.96551538744897819336758232752\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $2.2066209286713850140325004382\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $2\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.1033104643356925070162502191$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{4} + 2 q^{5} - q^{7} - 3 q^{8} + 2 q^{10} - 4 q^{11} - 2 q^{13} - q^{14} - q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 4 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$3$ $2$ $I_{2}^{*}$ Additive -1 2 8 2
$7$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.48.0.84

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 7 ord add nonsplit 2 - 0 0 - 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 63.a consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-7})$$ $$\Z/2\Z \oplus \Z/2\Z$$ 2.0.7.1-567.1-a2 $2$ $$\Q(\sqrt{21})$$ $$\Z/4\Z$$ 2.2.21.1-21.1-a2 $2$ $$\Q(\sqrt{-3})$$ $$\Z/8\Z$$ 2.0.3.1-147.2-a4 $4$ $$\Q(\sqrt{-3}, \sqrt{-7})$$ $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $4$ 4.0.189.1 $$\Z/16\Z$$ Not in database $8$ 8.0.2439569664.5 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $8$ 8.4.2439569664.2 $$\Z/8\Z$$ Not in database $8$ 8.0.1750329.1 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $8$ 8.2.425329947.1 $$\Z/6\Z$$ Not in database $16$ 16.0.5951500145509072896.2 $$\Z/4\Z \oplus \Z/8\Z$$ Not in database $16$ 16.0.482071511786234904576.2 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $16$ Deg 16 $$\Z/32\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/12\Z$$ Not in database $16$ Deg 16 $$\Z/24\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.