Properties

Label 62790.bu1
Conductor 62790
Discriminant 1536341563898865415843582949700
j-invariant \( \frac{8828342566147309471108534663879471201}{1536341563898865415843582949700} \)
CM no
Rank 0
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 0, -43057798550, 3438429180592800]); // or
 
magma: E := EllipticCurve("62790bt8");
 
sage: E = EllipticCurve([1, 0, 0, -43057798550, 3438429180592800]) # or
 
sage: E = EllipticCurve("62790bt8")
 
gp: E = ellinit([1, 0, 0, -43057798550, 3438429180592800]) \\ or
 
gp: E = ellinit("62790bt8")
 

\( y^2 + x y = x^{3} - 43057798550 x + 3438429180592800 \)

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

magma: TorsionSubgroup(E);
 
sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 

\( \left(\frac{483999}{4}, -\frac{483999}{8}\right) \)

Integral points

magma: IntegralPoints(E);
 
sage: E.integral_points()
 
None

Invariants

magma: Conductor(E);
 
sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
Conductor: \( 62790 \)  =  \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 23\)
magma: Discriminant(E);
 
sage: E.discriminant().factor()
 
gp: E.disc
 
Discriminant: \(1536341563898865415843582949700 \)  =  \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{24} \cdot 13^{3} \cdot 23^{3} \)
magma: jInvariant(E);
 
sage: E.j_invariant().factor()
 
gp: E.j
 
j-invariant: \( \frac{8828342566147309471108534663879471201}{1536341563898865415843582949700} \)  =  \(2^{-2} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-24} \cdot 11^{3} \cdot 13^{-3} \cdot 23^{-3} \cdot 83^{3} \cdot 109^{3} \cdot 647^{3} \cdot 32099^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

magma: Rank(E);
 
sage: E.rank()
 
Rank: \(0\)
magma: Regulator(E);
 
sage: E.regulator()
 
Regulator: \(1\)
magma: RealPeriod(E);
 
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
Real period: \(0.0259615690289\)
magma: TamagawaNumbers(E);
 
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Tamagawa product: \( 288 \)  = \( 2\cdot1\cdot2\cdot( 2^{3} \cdot 3 )\cdot3\cdot1 \)
magma: Order(TorsionSubgroup(E));
 
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
Torsion order: \(2\)
magma: MordellWeilShaInformation(E);
 
sage: E.sha().an_numerical()
 
Analytic order of Ш: \(4\) (exact)

Modular invariants

Modular form 62790.2.a.bu

magma: ModularForm(E);
 
sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 

\( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + q^{10} + q^{12} + q^{13} + q^{14} + q^{15} + q^{16} + 6q^{17} + q^{18} - 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

magma: ModularDegree(E);
 
sage: E.modular_degree()
 
Modular degree: 228261888
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 

\( L(E,1) \) ≈ \( 7.47693188032 \)

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(3\) \(1\) \( I_{1} \) Split multiplicative -1 1 1 1
\(5\) \(2\) \( I_{2} \) Split multiplicative -1 1 2 2
\(7\) \(24\) \( I_{24} \) Split multiplicative -1 1 24 24
\(13\) \(3\) \( I_{3} \) Split multiplicative -1 1 3 3
\(23\) \(1\) \( I_{3} \) Non-split multiplicative 1 1 3 3

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13d.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 
sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B.1.2

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5 7 13 23
Reduction type split split split split split nonsplit
$\lambda$-invariant(s) 5 3 1 1 1 0
$\mu$-invariant(s) 0 1 0 0 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 62790.bu consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{39}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{897}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
\(\Q(\sqrt{23}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-3}) \) \(\Z/6\Z\) Not in database
3 3.1.24300.4 \(\Z/6\Z\) Not in database
4 \(\Q(\sqrt{-3}, \sqrt{-13})\) \(\Z/12\Z\) Not in database
\(\Q(\sqrt{-3}, \sqrt{-299})\) \(\Z/2\Z \times \Z/6\Z\) Not in database
4.4.21829392.2 \(\Z/8\Z\) Not in database
\(\Q(\sqrt{-3}, \sqrt{23})\) \(\Z/12\Z\) Not in database
\(\Q(\sqrt{23}, \sqrt{39})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
6 \( x^{6} - 3 x^{5} - 669 x^{4} + 1163 x^{3} + 150126 x^{2} - 271758 x - 11170754 \) \(\Z/2\Z \times \Z/6\Z\) Not in database
\( x^{6} - 69 x^{4} - 180 x^{3} + 1587 x^{2} - 12420 x - 4067 \) \(\Z/12\Z\) Not in database
6.2.62270713440000.3 \(\Z/12\Z\) Not in database
6.0.1771470000.2 \(\Z/3\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.