Properties

Label 62475.cm
Number of curves $4$
Conductor $62475$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cm1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 62475.cm have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 62475.cm do not have complex multiplication.

Modular form 62475.2.a.cm

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{8} + q^{9} - q^{12} - 6 q^{13} - q^{16} - q^{17} + q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 62475.cm

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62475.cm1 62475bs4 \([1, 0, 1, -2065376, -1142597977]\) \(530044731605089/26309115\) \(48363141728671875\) \([2]\) \(1179648\) \(2.2728\)  
62475.cm2 62475bs3 \([1, 0, 1, -656626, 190324523]\) \(17032120495489/1339001685\) \(2461440769352578125\) \([2]\) \(1179648\) \(2.2728\)  
62475.cm3 62475bs2 \([1, 0, 1, -136001, -15842977]\) \(151334226289/28676025\) \(52714151019140625\) \([2, 2]\) \(589824\) \(1.9263\)  
62475.cm4 62475bs1 \([1, 0, 1, 17124, -1449227]\) \(302111711/669375\) \(-1230489052734375\) \([2]\) \(294912\) \(1.5797\) \(\Gamma_0(N)\)-optimal