Label 62400if
Number of curves $1$
Conductor $62400$
CM no
Rank $1$

Related objects


Learn more

Show commands for: SageMath
sage: E = EllipticCurve("if1")
sage: E.isogeny_class()

Elliptic curves in class 62400if

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.hy1 62400if1 \([0, 1, 0, 31167, 17114463]\) \(261568120/10024911\) \(-128318860800000000\) \([]\) \(518400\) \(1.9627\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 62400if1 has rank \(1\).

Complex multiplication

The elliptic curves in class 62400if do not have complex multiplication.

Modular form 62400.2.a.if

sage: E.q_eigenform(10)
\(q + q^{3} + 4q^{7} + q^{9} + q^{13} + 3q^{19} + O(q^{20})\)  Toggle raw display