Label 62400.z
Number of curves $1$
Conductor $62400$
CM no
Rank $1$

Related objects


Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("z1")
sage: E.isogeny_class()

Elliptic curves in class 62400.z

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.z1 62400bx1 \([0, -1, 0, -6061333, -5839286963]\) \(-769623354048512/15247889631\) \(-487932468192000000000\) \([]\) \(2688000\) \(2.7626\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 62400.z1 has rank \(1\).

Complex multiplication

The elliptic curves in class 62400.z do not have complex multiplication.

Modular form 62400.2.a.z

sage: E.q_eigenform(10)
\(q - q^{3} - 3q^{7} + q^{9} - 3q^{11} + q^{13} - 3q^{17} + O(q^{20})\)  Toggle raw display