Properties

Label 62400.x
Number of curves $1$
Conductor $62400$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("x1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 62400.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.x1 62400ei1 \([0, -1, 0, -10533, -634563]\) \(-504871936/394875\) \(-101088000000000\) \([]\) \(184320\) \(1.3859\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 62400.x1 has rank \(0\).

Complex multiplication

The elliptic curves in class 62400.x do not have complex multiplication.

Modular form 62400.2.a.x

sage: E.q_eigenform(10)
 
\(q - q^{3} - 3q^{7} + q^{9} - 3q^{11} - q^{13} + q^{17} - 6q^{19} + O(q^{20})\)  Toggle raw display