Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 62400.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
62400.r1 | 62400bh4 | [0, -1, 0, -33183233, 73585358337] | [2] | 3932160 | |
62400.r2 | 62400bh3 | [0, -1, 0, -3743233, -944177663] | [2] | 3932160 | |
62400.r3 | 62400bh2 | [0, -1, 0, -2079233, 1144142337] | [2, 2] | 1966080 | |
62400.r4 | 62400bh1 | [0, -1, 0, -31233, 44366337] | [2] | 983040 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 62400.r have rank \(0\).
Complex multiplication
The elliptic curves in class 62400.r do not have complex multiplication.Modular form 62400.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.