Label 62400.n
Number of curves $1$
Conductor $62400$
CM no
Rank $0$

Related objects


Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("n1")
sage: E.isogeny_class()

Elliptic curves in class 62400.n

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
62400.n1 62400fx1 [0, -1, 0, 31167, -17114463] [] 518400 \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 62400.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 62400.n do not have complex multiplication.

Modular form 62400.2.a.n

sage: E.q_eigenform(10)
\( q - q^{3} - 4q^{7} + q^{9} + q^{13} - 3q^{19} + O(q^{20}) \)