Label 62400.k
Number of curves $1$
Conductor $62400$
CM no
Rank $0$

Related objects


Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("k1")
sage: E.isogeny_class()

Elliptic curves in class 62400.k

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
62400.k1 62400el1 \([0, -1, 0, 1247, 136417]\) \(261568120/10024911\) \(-8212407091200\) \([]\) \(103680\) \(1.1579\) \(\Gamma_0(N)\)-optimal


sage: E.rank()

The elliptic curve 62400.k1 has rank \(0\).

Complex multiplication

The elliptic curves in class 62400.k do not have complex multiplication.

Modular form 62400.2.a.k

sage: E.q_eigenform(10)
\(q - q^{3} - 4q^{7} + q^{9} - q^{13} + 3q^{19} + O(q^{20})\)  Toggle raw display