Properties

Label 62400.f
Number of curves $4$
Conductor $62400$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 62400.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
62400.f1 62400bi4 [0, -1, 0, -832033, 292395937] [4] 589824  
62400.f2 62400bi3 [0, -1, 0, -72033, 755937] [2] 589824  
62400.f3 62400bi2 [0, -1, 0, -52033, 4575937] [2, 2] 294912  
62400.f4 62400bi1 [0, -1, 0, -2033, 125937] [2] 147456 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 62400.f have rank \(2\).

Complex multiplication

The elliptic curves in class 62400.f do not have complex multiplication.

Modular form 62400.2.a.f

sage: E.q_eigenform(10)
 
\( q - q^{3} - 4q^{7} + q^{9} - 4q^{11} + q^{13} - 6q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.