sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 61a1 has
rank \(1\).
|
Bad L-factors: |
Prime |
L-Factor |
\(61\) | \(1 + T\) |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
\(2\) |
\( 1 + T + 2 T^{2}\) |
1.2.b
|
\(3\) |
\( 1 + 2 T + 3 T^{2}\) |
1.3.c
|
\(5\) |
\( 1 + 3 T + 5 T^{2}\) |
1.5.d
|
\(7\) |
\( 1 - T + 7 T^{2}\) |
1.7.ab
|
\(11\) |
\( 1 + 5 T + 11 T^{2}\) |
1.11.f
|
\(13\) |
\( 1 - T + 13 T^{2}\) |
1.13.ab
|
\(17\) |
\( 1 - 4 T + 17 T^{2}\) |
1.17.ae
|
\(19\) |
\( 1 + 4 T + 19 T^{2}\) |
1.19.e
|
\(23\) |
\( 1 + 9 T + 23 T^{2}\) |
1.23.j
|
\(29\) |
\( 1 + 6 T + 29 T^{2}\) |
1.29.g
|
$\cdots$ | $\cdots$ | $\cdots$ |
|
|
See L-function page for more information |
The elliptic curves in class 61a do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 61a
sage:E.isogeny_class().curves