# Properties

 Label 61710bj Number of curves 2 Conductor 61710 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("61710.bj1")

sage: E.isogeny_class()

## Elliptic curves in class 61710bj

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
61710.bj2 61710bj1 [1, 0, 1, -106483, -5898994] [2] 645120 $$\Gamma_0(N)$$-optimal
61710.bj1 61710bj2 [1, 0, 1, -1422963, -653080562] [2] 1290240

## Rank

sage: E.rank()

The elliptic curves in class 61710bj have rank $$0$$.

## Modular form 61710.2.a.bj

sage: E.q_eigenform(10)

$$q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} + 2q^{7} - q^{8} + q^{9} - q^{10} + q^{12} + 4q^{13} - 2q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.