Properties

Label 6137b
Number of curves $4$
Conductor $6137$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6137b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(17\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6137b do not have complex multiplication.

Modular form 6137.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 2 q^{5} + 4 q^{7} - 3 q^{8} - 3 q^{9} - 2 q^{10} + 2 q^{13} + 4 q^{14} - q^{16} + q^{17} - 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 6137b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6137.b3 6137b1 \([1, -1, 0, -248, -581]\) \(35937/17\) \(799779977\) \([2]\) \(1728\) \(0.40244\) \(\Gamma_0(N)\)-optimal
6137.b2 6137b2 \([1, -1, 0, -2053, 35880]\) \(20346417/289\) \(13596259609\) \([2, 2]\) \(3456\) \(0.74901\)  
6137.b1 6137b3 \([1, -1, 0, -32738, 2288159]\) \(82483294977/17\) \(799779977\) \([2]\) \(6912\) \(1.0956\)  
6137.b4 6137b4 \([1, -1, 0, -248, 95445]\) \(-35937/83521\) \(-3929319027001\) \([2]\) \(6912\) \(1.0956\)