Properties

Label 61152j
Number of curves $1$
Conductor $61152$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 61152j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61152j do not have complex multiplication.

Modular form 61152.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{9} + 4 q^{11} + q^{13} - q^{15} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 61152j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61152.u1 61152j1 \([0, -1, 0, -755645, -252591051]\) \(-99021508447744/6782139\) \(-3268247024480256\) \([]\) \(552960\) \(2.0311\) \(\Gamma_0(N)\)-optimal