Properties

Label 61152ba
Number of curves $1$
Conductor $61152$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 61152ba1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + T + 23 T^{2}\) 1.23.b
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 61152ba do not have complex multiplication.

Modular form 61152.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 3 q^{11} - q^{13} - 5 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 61152ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
61152.m1 61152ba1 \([0, -1, 0, 2287, 235425]\) \(56000/1053\) \(-24864094015488\) \([]\) \(107520\) \(1.2508\) \(\Gamma_0(N)\)-optimal