Properties

Label 60984g
Number of curves $2$
Conductor $60984$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 60984g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60984.l1 60984g1 \([0, 0, 0, -726, -6655]\) \(55296/7\) \(5357200464\) \([2]\) \(34560\) \(0.59603\) \(\Gamma_0(N)\)-optimal
60984.l2 60984g2 \([0, 0, 0, 1089, -34606]\) \(11664/49\) \(-600006451968\) \([2]\) \(69120\) \(0.94260\)  

Rank

sage: E.rank()
 

The elliptic curves in class 60984g have rank \(0\).

Complex multiplication

The elliptic curves in class 60984g do not have complex multiplication.

Modular form 60984.2.a.g

sage: E.q_eigenform(10)
 
\(q - 2q^{5} - q^{7} + 6q^{13} - 2q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.