Properties

Label 60984ch
Number of curves $4$
Conductor $60984$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("ch1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 60984ch

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60984.p4 60984ch1 \([0, 0, 0, 1089, 71874]\) \(432/7\) \(-2314310600448\) \([2]\) \(81920\) \(1.0531\) \(\Gamma_0(N)\)-optimal
60984.p3 60984ch2 \([0, 0, 0, -20691, 1078110]\) \(740772/49\) \(64800696812544\) \([2, 2]\) \(163840\) \(1.3996\)  
60984.p2 60984ch3 \([0, 0, 0, -64251, -4959306]\) \(11090466/2401\) \(6350468287629312\) \([2]\) \(327680\) \(1.7462\)  
60984.p1 60984ch4 \([0, 0, 0, -325611, 71514630]\) \(1443468546/7\) \(18514484803584\) \([2]\) \(327680\) \(1.7462\)  

Rank

sage: E.rank()
 

The elliptic curves in class 60984ch have rank \(1\).

Complex multiplication

The elliptic curves in class 60984ch do not have complex multiplication.

Modular form 60984.2.a.ch

sage: E.q_eigenform(10)
 
\(q - 2q^{5} + q^{7} - 2q^{13} - 6q^{17} - 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.