# Properties

 Label 60984.y1 Conductor $60984$ Discriminant $1.882\times 10^{12}$ j-invariant $$\frac{274717696}{83349}$$ CM no Rank $2$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -3828, -62876])

gp: E = ellinit([0, 0, 0, -3828, -62876])

magma: E := EllipticCurve([0, 0, 0, -3828, -62876]);

$$y^2=x^3-3828x-62876$$

## Mordell-Weil group structure

$\Z^2$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $P$ = $$\left(122, 1134\right)$$ $$\left(-46, 126\right)$$ $\hat{h}(P)$ ≈ $0.40995862178212891622213634181$ $0.85693484748958335504537715437$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$(-46,\pm 126)$$, $$(-40,\pm 162)$$, $$(-30,\pm 158)$$, $$(-18,\pm 14)$$, $$(80,\pm 378)$$, $$(89,\pm 549)$$, $$(122,\pm 1134)$$, $$(192,\pm 2506)$$, $$(1094,\pm 36126)$$, $$(2390,\pm 116802)$$, $$(10440,\pm 1066702)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$60984$$ = $2^{3} \cdot 3^{2} \cdot 7 \cdot 11^{2}$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $1882145776896$ = $2^{8} \cdot 3^{11} \cdot 7^{3} \cdot 11^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{274717696}{83349}$$ = $2^{10} \cdot 3^{-5} \cdot 7^{-3} \cdot 11 \cdot 29^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $1.0603166986490825717418257318\dots$ Stable Faltings height: $-0.35073677819133090424427556396\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $2$ sage: E.regulator()  magma: Regulator(E); Regulator: $0.32238934325265469466116595124\dots$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $0.62124800807201468168768041555\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $48$  = $2^{2}\cdot2^{2}\cdot3\cdot1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (rounded) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L^{(2)}(E,1)/2!$ ≈ $9.6136193913291233137890167971069966048$

## Modular invariants

Modular form 60984.2.a.y

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{5} + q^{7} - 6q^{13} - 3q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 92160 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $4$ $I_1^{*}$ Additive 1 3 8 0
$3$ $4$ $I_5^{*}$ Additive -1 2 11 5
$7$ $3$ $I_{3}$ Split multiplicative -1 1 3 3
$11$ $1$ $II$ Additive -1 2 2 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add ordinary split add ordinary ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary - - 2 5 - 2 2 2 2 2,2 2 2 2 2 2 - - 0 0 - 0 0 0 0 0,0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 60984.y consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.3.10164.1 $$\Z/2\Z$$ Not in database $6$ 6.6.2169444816.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.321358557662208.10 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.