# Properties

 Label 60984.l Number of curves $2$ Conductor $60984$ CM no Rank $0$ Graph # Related objects

Show commands: SageMath
sage: E = EllipticCurve("l1")

sage: E.isogeny_class()

## Elliptic curves in class 60984.l

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60984.l1 60984g1 $$[0, 0, 0, -726, -6655]$$ $$55296/7$$ $$5357200464$$ $$$$ $$34560$$ $$0.59603$$ $$\Gamma_0(N)$$-optimal
60984.l2 60984g2 $$[0, 0, 0, 1089, -34606]$$ $$11664/49$$ $$-600006451968$$ $$$$ $$69120$$ $$0.94260$$

## Rank

sage: E.rank()

The elliptic curves in class 60984.l have rank $$0$$.

## Complex multiplication

The elliptic curves in class 60984.l do not have complex multiplication.

## Modular form 60984.2.a.l

sage: E.q_eigenform(10)

$$q - 2q^{5} - q^{7} + 6q^{13} - 2q^{17} - 4q^{19} + O(q^{20})$$ ## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 