Properties

Label 60984.g1
Conductor $60984$
Discriminant $2.640\times 10^{13}$
j-invariant \( \frac{598885164}{539} \)
CM no
Rank $2$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -64251, 6263686])
 
gp: E = ellinit([0, 0, 0, -64251, 6263686])
 
magma: E := EllipticCurve([0, 0, 0, -64251, 6263686]);
 

\(y^2=x^3-64251x+6263686\)  Toggle raw display

Mordell-Weil group structure

$\Z^2 \times \Z/{2}\Z$

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(110, 726\right)\)  Toggle raw display\(\left(1199, 40656\right)\)  Toggle raw display
$\hat{h}(P)$ ≈  $1.1017402619666572675563392508$$1.5058462633918083819435208111$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(143, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((-241,\pm 2784)\), \((110,\pm 726)\), \((135,\pm 224)\), \( \left(143, 0\right) \), \((170,\pm 504)\), \((231,\pm 1936)\), \((506,\pm 10164)\), \((1199,\pm 40656)\)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 60984 \)  =  $2^{3} \cdot 3^{2} \cdot 7 \cdot 11^{2}$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $26400283886592 $  =  $2^{10} \cdot 3^{3} \cdot 7^{2} \cdot 11^{7} $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{598885164}{539} \)  =  $2^{2} \cdot 3^{6} \cdot 7^{-2} \cdot 11^{-1} \cdot 59^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $1.4997755032122017712917241397\dots$
Stable Faltings height: $-0.55144785582063201476908572639\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $2$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $1.6227073215291293984217611393\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $0.66438297316062495298298440639\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 32 $  = $ 2\cdot2\cdot2\cdot2^{2} $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $2$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (rounded)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L^{(2)}(E,1)/2! $ ≈ $ 8.6247929187762974644072971445343914929 $

Modular invariants

Modular form 60984.2.a.g

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - 2q^{5} - q^{7} - 4q^{13} - 6q^{17} - 2q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 215040
$ \Gamma_0(N) $-optimal: yes
Manin constant: 1

Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $III^{*}$ Additive 1 3 10 0
$3$ $2$ $III$ Additive 1 2 3 0
$7$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$11$ $4$ $I_1^{*}$ Additive -1 2 7 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image $\GL(2,\Z_\ell)$ for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 2.3.0.1

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add ordinary nonsplit add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary
$\lambda$-invariant(s) - - 2 2 - 2 2 2 2 2 2 2 2 2 2
$\mu$-invariant(s) - - 0 0 - 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2.
Its isogeny class 60984.g consists of 2 curves linked by isogenies of degree 2.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{33}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$4$ 4.0.19008.2 \(\Z/4\Z\) Not in database
$8$ 8.4.3175234143814656.26 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.0.43717791744.1 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ Deg 8 \(\Z/6\Z\) Not in database
$16$ Deg 16 \(\Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.