Properties

Label 60840s
Number of curves $2$
Conductor $60840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 60840s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 60840s do not have complex multiplication.

Modular form 60840.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} + 4 q^{11} + 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 60840s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60840.t1 60840s1 \([0, 0, 0, -88569858, -285543252943]\) \(621217777580032/74733890625\) \(9243900748547670143250000\) \([2]\) \(11741184\) \(3.5212\) \(\Gamma_0(N)\)-optimal
60840.t2 60840s2 \([0, 0, 0, 127647897, -1462157032102]\) \(116227003261808/533935546875\) \(-1056687328366217437500000000\) \([2]\) \(23482368\) \(3.8678\)