Properties

Label 60840.ba
Number of curves $4$
Conductor $60840$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ba1")
 
E.isogeny_class()
 

Elliptic curves in class 60840.ba

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60840.ba1 60840z4 \([0, 0, 0, -854194107, 9609105685894]\) \(19129597231400697604/26325\) \(94854071816524800\) \([2]\) \(8257536\) \(3.4239\)  
60840.ba2 60840z2 \([0, 0, 0, -53387607, 150139469194]\) \(18681746265374416/693005625\) \(624258360142503840000\) \([2, 2]\) \(4128768\) \(3.0773\)  
60840.ba3 60840z3 \([0, 0, 0, -50923587, 164624457166]\) \(-4053153720264484/903687890625\) \(-3256162434076640400000000\) \([2]\) \(8257536\) \(3.4239\)  
60840.ba4 60840z1 \([0, 0, 0, -3491202, 2116794121]\) \(83587439220736/13990184325\) \(787645980941339941200\) \([2]\) \(2064384\) \(2.7307\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 60840.ba have rank \(1\).

Complex multiplication

The elliptic curves in class 60840.ba do not have complex multiplication.

Modular form 60840.2.a.ba

sage: E.q_eigenform(10)
 
\(q + q^{5} - 4 q^{7} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.