Learn more

Refine search


Results (44 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
6080.a1 6080.a \( 2^{6} \cdot 5 \cdot 19 \) $2$ $\mathsf{trivial}$ $0.130606322$ $[0, 0, 0, -268, 7408]$ \(y^2=x^3-268x+7408\)
6080.b1 6080.b \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3052, -69296]$ \(y^2=x^3-3052x-69296\)
6080.c1 6080.c \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1666641, 827598895]$ \(y^2=x^3+x^2-1666641x+827598895\)
6080.c2 6080.c \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -104141, 12911395]$ \(y^2=x^3+x^2-104141x+12911395\)
6080.d1 6080.d \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.571551657$ $[0, 1, 0, -141, -605]$ \(y^2=x^3+x^2-141x-605\)
6080.d2 6080.d \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $3.143103314$ $[0, 1, 0, 239, -2961]$ \(y^2=x^3+x^2+239x-2961\)
6080.e1 6080.e \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -81, 79]$ \(y^2=x^3+x^2-81x+79\)
6080.e2 6080.e \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 19, 19]$ \(y^2=x^3+x^2+19x+19\)
6080.f1 6080.f \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.330382304$ $[0, 1, 0, -3685, 79083]$ \(y^2=x^3+x^2-3685x+79083\)
6080.f2 6080.f \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.660764609$ $[0, 1, 0, 3535, 357775]$ \(y^2=x^3+x^2+3535x+357775\)
6080.g1 6080.g \( 2^{6} \cdot 5 \cdot 19 \) $2$ $\mathsf{trivial}$ $0.228208421$ $[0, -1, 0, -161, 865]$ \(y^2=x^3-x^2-161x+865\)
6080.h1 6080.h \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $6.040306497$ $[0, -1, 0, -177921, -28826879]$ \(y^2=x^3-x^2-177921x-28826879\)
6080.h2 6080.h \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $2.013435499$ $[0, -1, 0, -1921, -49279]$ \(y^2=x^3-x^2-1921x-49279\)
6080.i1 6080.i \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.495719745$ $[0, -1, 0, 95, -703]$ \(y^2=x^3-x^2+95x-703\)
6080.j1 6080.j \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8108, -281008]$ \(y^2=x^3-8108x-281008\)
6080.j2 6080.j \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -908, 3472]$ \(y^2=x^3-908x+3472\)
6080.j3 6080.j \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -508, -4368]$ \(y^2=x^3-508x-4368\)
6080.j4 6080.j \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8, -168]$ \(y^2=x^3-8x-168\)
6080.k1 6080.k \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8108, 281008]$ \(y^2=x^3-8108x+281008\)
6080.k2 6080.k \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -908, -3472]$ \(y^2=x^3-908x-3472\)
6080.k3 6080.k \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -508, 4368]$ \(y^2=x^3-508x+4368\)
6080.k4 6080.k \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -8, 168]$ \(y^2=x^3-8x+168\)
6080.l1 6080.l \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.704710779$ $[0, 0, 0, -692, 6976]$ \(y^2=x^3-692x+6976\)
6080.l2 6080.l \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.409421559$ $[0, 0, 0, -67, -24]$ \(y^2=x^3-67x-24\)
6080.m1 6080.m \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -412, -3216]$ \(y^2=x^3-412x-3216\)
6080.m2 6080.m \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -32, -24]$ \(y^2=x^3-32x-24\)
6080.n1 6080.n \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -412, 3216]$ \(y^2=x^3-412x+3216\)
6080.n2 6080.n \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -32, 24]$ \(y^2=x^3-32x+24\)
6080.o1 6080.o \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -692, -6976]$ \(y^2=x^3-692x-6976\)
6080.o2 6080.o \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -67, 24]$ \(y^2=x^3-67x+24\)
6080.p1 6080.p \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.440025200$ $[0, 1, 0, -177921, 28826879]$ \(y^2=x^3+x^2-177921x+28826879\)
6080.p2 6080.p \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.320075601$ $[0, 1, 0, -1921, 49279]$ \(y^2=x^3+x^2-1921x+49279\)
6080.q1 6080.q \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $1.709411606$ $[0, 1, 0, -161, -865]$ \(y^2=x^3+x^2-161x-865\)
6080.r1 6080.r \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\mathsf{trivial}$ $0.481989983$ $[0, 1, 0, 95, 703]$ \(y^2=x^3+x^2+95x+703\)
6080.s1 6080.s \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -81, -79]$ \(y^2=x^3-x^2-81x-79\)
6080.s2 6080.s \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 19, -19]$ \(y^2=x^3-x^2+19x-19\)
6080.t1 6080.t \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $2.702693226$ $[0, -1, 0, -141, 605]$ \(y^2=x^3-x^2-141x+605\)
6080.t2 6080.t \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $5.405386452$ $[0, -1, 0, 239, 2961]$ \(y^2=x^3-x^2+239x+2961\)
6080.u1 6080.u \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1666641, -827598895]$ \(y^2=x^3-x^2-1666641x-827598895\)
6080.u2 6080.u \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -104141, -12911395]$ \(y^2=x^3-x^2-104141x-12911395\)
6080.v1 6080.v \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $1.750366823$ $[0, -1, 0, -3685, -79083]$ \(y^2=x^3-x^2-3685x-79083\)
6080.v2 6080.v \( 2^{6} \cdot 5 \cdot 19 \) $1$ $\Z/2\Z$ $0.875183411$ $[0, -1, 0, 3535, -357775]$ \(y^2=x^3-x^2+3535x-357775\)
6080.w1 6080.w \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -268, -7408]$ \(y^2=x^3-268x-7408\)
6080.x1 6080.x \( 2^{6} \cdot 5 \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3052, 69296]$ \(y^2=x^3-3052x+69296\)
  Download to