Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-56x+4848\)
|
(homogenize, simplify) |
\(y^2z=x^3-56xz^2+4848z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-56x+4848\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Integral points
None
Invariants
Conductor: | \( 608 \) | = | $2^{5} \cdot 19$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-10142101504 $ | = | $-1 \cdot 2^{12} \cdot 19^{5} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{4741632}{2476099} \) | = | $-1 \cdot 2^{9} \cdot 3^{3} \cdot 7^{3} \cdot 19^{-5}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.59909178968733212167691722989\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-0.094055390872613187740314891568\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.0430839616815614157379968644\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 2 $ = $ 2\cdot1 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $1$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.0861679233631228314759937289 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.086167923 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.043084 \cdot 1.000000 \cdot 2}{1^2} \approx 2.086167923$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 480 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | Additive | -1 | 5 | 12 | 0 |
$19$ | $1$ | $I_{5}$ | Non-split multiplicative | 1 | 1 | 5 | 5 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$5$ | 5Ns | 5.15.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 380 = 2^{2} \cdot 5 \cdot 19 \), index $60$, genus $3$, and generators
$\left(\begin{array}{rr} 197 & 10 \\ 86 & 123 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 10 & 1 \end{array}\right),\left(\begin{array}{rr} 21 & 10 \\ 105 & 51 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 7 \\ 355 & 293 \end{array}\right),\left(\begin{array}{rr} 191 & 352 \\ 0 & 267 \end{array}\right),\left(\begin{array}{rr} 371 & 10 \\ 370 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[380])$ is a degree-$94556160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/380\Z)$.
Isogenies
This curve has no rational isogenies. Its isogeny class 608.e consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 608.d1, its twist by $-4$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.76.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.109744.2 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$8$ | 8.2.18678548201472.22 | \(\Z/3\Z\) | Not in database |
$8$ | 8.0.8192000.1 | \(\Z/5\Z\) | Not in database |
$12$ | 12.2.59986716965994496.10 | \(\Z/4\Z\) | Not in database |
$16$ | 16.4.1048576000000000000.1 | \(\Z/5\Z\) | Not in database |
We only show fields where the torsion growth is primitive.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ss | ord | ord | ord | ord | ord | nonsplit | ss | ss | ord | ord | ss | ord | ord |
$\lambda$-invariant(s) | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
$\mu$-invariant(s) | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.