Properties

Label 60690bs
Number of curves $1$
Conductor $60690$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bs1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 60690bs

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
60690.bm1 60690bs1 \([1, 1, 1, -26305, 1849025]\) \(-288568081/47250\) \(-329604539087250\) \([]\) \(330480\) \(1.5132\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 60690bs1 has rank \(0\).

Complex multiplication

The elliptic curves in class 60690bs do not have complex multiplication.

Modular form 60690.2.a.bs

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - q^{7} + q^{8} + q^{9} + q^{10} - 2q^{11} - q^{12} + 4q^{13} - q^{14} - q^{15} + q^{16} + q^{18} + 6q^{19} + O(q^{20})\)  Toggle raw display