Show commands for:
SageMath
sage: E = EllipticCurve("bf1")
sage: E.isogeny_class()
Elliptic curves in class 60690bf
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
60690.bf3 | 60690bf1 | [1, 0, 1, -1018, -7972] | [2] | 73728 | \(\Gamma_0(N)\)-optimal |
60690.bf2 | 60690bf2 | [1, 0, 1, -6798, 209356] | [2, 2] | 147456 | |
60690.bf4 | 60690bf3 | [1, 0, 1, 1872, 708748] | [2] | 294912 | |
60690.bf1 | 60690bf4 | [1, 0, 1, -107948, 13642076] | [2] | 294912 |
Rank
sage: E.rank()
The elliptic curves in class 60690bf have rank \(0\).
Complex multiplication
The elliptic curves in class 60690bf do not have complex multiplication.Modular form 60690.2.a.bf
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.