Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+392x-21712\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+392xz^2-21712z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+31725x-15923250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(23, 0)$ | $0$ | $2$ |
Integral points
\( \left(23, 0\right) \)
Invariants
| Conductor: | $N$ | = | \( 600 \) | = | $2^{3} \cdot 3 \cdot 5^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-209952000000$ | = | $-1 \cdot 2^{11} \cdot 3^{8} \cdot 5^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{207646}{6561} \) | = | $2 \cdot 3^{-8} \cdot 47^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.85251385069713822405860111124$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.58759002103319516354090800004$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1597991410868231$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.237884673754029$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.48221155823511766584545719840$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 1\cdot2^{3}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $1.9288462329404706633818287936 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.928846233 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.482212 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 1.928846233\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 512 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $II^{*}$ | additive | 1 | 3 | 11 | 0 |
| $3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.48.0.218 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 240 = 2^{4} \cdot 3 \cdot 5 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 142 & 227 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 236 & 237 \end{array}\right),\left(\begin{array}{rr} 236 & 185 \\ 75 & 26 \end{array}\right),\left(\begin{array}{rr} 166 & 85 \\ 105 & 226 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right),\left(\begin{array}{rr} 161 & 160 \\ 40 & 81 \end{array}\right),\left(\begin{array}{rr} 143 & 0 \\ 0 & 239 \end{array}\right)$.
The torsion field $K:=\Q(E[240])$ is a degree-$2949120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 25 = 5^{2} \) |
| $3$ | split multiplicative | $4$ | \( 200 = 2^{3} \cdot 5^{2} \) |
| $5$ | additive | $14$ | \( 24 = 2^{3} \cdot 3 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 600d
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 24a6, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.8.1-45000.2-i1 |
| $2$ | \(\Q(\sqrt{10}) \) | \(\Z/4\Z\) | 2.2.40.1-72.1-e1 |
| $2$ | \(\Q(\sqrt{-5}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-5})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.13271040000.26 | \(\Z/16\Z\) | not in database |
| $8$ | 8.2.113374080000.6 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.2621440000.5 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.2621440000.3 | \(\Z/8\Z\) | not in database |
| $16$ | 16.0.109951162777600000000.3 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 |
|---|---|---|---|
| Reduction type | add | split | add |
| $\lambda$-invariant(s) | - | 1 | - |
| $\mu$-invariant(s) | - | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.