Properties

Label 600.g
Number of curves $2$
Conductor $600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 600.g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
600.g1 600h2 [0, 1, 0, -4208, -66912] [2] 960  
600.g2 600h1 [0, 1, 0, 792, -6912] [2] 480 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 600.g have rank \(0\).

Complex multiplication

The elliptic curves in class 600.g do not have complex multiplication.

Modular form 600.2.a.g

sage: E.q_eigenform(10)
 
\( q + q^{3} - 2q^{7} + q^{9} + 2q^{11} + 2q^{13} + 6q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.