Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-268193x-429928127\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-268193xz^2-429928127z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-21723660x-313482775536\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(13439229/12769, 30695751680/1442897)$ | $10.069965198092060290149543731$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 59584 \) | = | $2^{6} \cdot 7^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-78648717645700923392$ | = | $-1 \cdot 2^{45} \cdot 7^{6} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( -\frac{69173457625}{2550136832} \) | = | $-1 \cdot 2^{-27} \cdot 5^{3} \cdot 19^{-1} \cdot 821^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.4978454563248181976304864740$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.48516961095724358095196192009$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.054621266416818$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8459416742456245$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.069965198092060290149543731$ |
|
Real period: | $\Omega$ | ≈ | $0.084215452962339169041731952338$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.3921867218892573438290718628 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.392186722 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.084215 \cdot 10.069965 \cdot 4}{1^2} \\ & \approx 3.392186722\end{aligned}$$
Modular invariants
Modular form 59584.2.a.z
For more coefficients, see the Downloads section to the right.
Modular degree: | 1306368 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{35}^{*}$ | additive | -1 | 6 | 45 | 27 |
$7$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B | 27.36.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 28728 = 2^{3} \cdot 3^{3} \cdot 7 \cdot 19 \), index $1296$, genus $43$, and generators
$\left(\begin{array}{rr} 24623 & 0 \\ 0 & 28727 \end{array}\right),\left(\begin{array}{rr} 31 & 36 \\ 22906 & 21967 \end{array}\right),\left(\begin{array}{rr} 21545 & 24570 \\ 0 & 28727 \end{array}\right),\left(\begin{array}{rr} 28675 & 54 \\ 28674 & 55 \end{array}\right),\left(\begin{array}{rr} 1 & 54 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12284 & 12285 \\ 2583 & 25136 \end{array}\right),\left(\begin{array}{rr} 5041 & 4179 \\ 13965 & 14456 \end{array}\right),\left(\begin{array}{rr} 28 & 27 \\ 729 & 703 \end{array}\right),\left(\begin{array}{rr} 13000 & 24633 \\ 791 & 4768 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 54 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[28728])$ is a degree-$92643856220160$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/28728\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 931 = 7^{2} \cdot 19 \) |
$7$ | additive | $26$ | \( 1216 = 2^{6} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 59584cl
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
The minimal quadratic twist of this elliptic curve is 38a2, its twist by $56$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-42}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.152.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.3511808.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.205978074624.5 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.450474049202688.2 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.6846916608.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | 12.0.1557130999647530092068864.2 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.2.201906434092298129641985063519986384896.2 | \(\Z/6\Z\) | not in database |
$18$ | 18.0.2112012614563679138031447702469448035763264421888.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ss | add | ord | ord | ord | nonsplit | ord | ord | ord | ord | ss | ord | ss |
$\lambda$-invariant(s) | - | 1 | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 2 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.