Properties

Label 592.e
Number of curves $1$
Conductor $592$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 592.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
592.e1 592c1 \([0, 0, 0, -16, -16]\) \(110592/37\) \(151552\) \([]\) \(80\) \(-0.30339\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 592.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 592.e do not have complex multiplication.

Modular form 592.2.a.e

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} - 2 q^{5} + q^{7} + 6 q^{9} + 5 q^{11} - 2 q^{13} - 6 q^{15} + O(q^{20})\) Copy content Toggle raw display