Show commands for:
SageMath
sage: E = EllipticCurve("iu1")
sage: E.isogeny_class()
Elliptic curves in class 58800iu
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
58800.jh3 | 58800iu1 | [0, 1, 0, -69008, -4428012] | [2] | 442368 | \(\Gamma_0(N)\)-optimal |
58800.jh2 | 58800iu2 | [0, 1, 0, -461008, 117091988] | [2, 2] | 884736 | |
58800.jh4 | 58800iu3 | [0, 1, 0, 126992, 395803988] | [2] | 1769472 | |
58800.jh1 | 58800iu4 | [0, 1, 0, -7321008, 7621931988] | [4] | 1769472 |
Rank
sage: E.rank()
The elliptic curves in class 58800iu have rank \(0\).
Complex multiplication
The elliptic curves in class 58800iu do not have complex multiplication.Modular form 58800.2.a.iu
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.