Properties

Label 58800.q
Number of curves $1$
Conductor $58800$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("q1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 58800.q

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58800.q1 58800cg1 \([0, -1, 0, -583, 7162]\) \(-71680/27\) \(-8268750000\) \([]\) \(34560\) \(0.61282\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 58800.q1 has rank \(1\).

Complex multiplication

The elliptic curves in class 58800.q do not have complex multiplication.

Modular form 58800.2.a.q

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 4q^{11} - q^{13} - 6q^{17} + 3q^{19} + O(q^{20})\)  Toggle raw display