Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-1035x-10584\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-1035xz^2-10584z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-16563x-693938\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(40, 84\right)\)
|
$\hat{h}(P)$ | ≈ | $2.7724276067073725060266561064$ |
Torsion generators
\( \left(-24, 12\right) \), \( \left(-12, 6\right) \)
Integral points
\( \left(-24, 12\right) \), \( \left(-12, 6\right) \), \( \left(40, 84\right) \), \( \left(40, -124\right) \), \( \left(948, 28686\right) \), \( \left(948, -29634\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 585 \) | = | $3^{2} \cdot 5 \cdot 13$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $20208044025 $ | = | $3^{14} \cdot 5^{2} \cdot 13^{2} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{168288035761}{27720225} \) | = | $3^{-8} \cdot 5^{-2} \cdot 13^{-2} \cdot 5521^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.69900244128877076854597130980\dots$ | ||
Stable Faltings height: | $0.14969629695471592284834869134\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $2.7724276067073725060266561064\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $0.85108145292620109686565595561\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 2.3595617156492210218470390653 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 384 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$3$ | $4$ | $I_{8}^{*}$ | Additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$13$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 16.48.0.4 |
The image of the adelic Galois representation has level $3120$, index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 13 & 8 \\ 2330 & 3077 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 633 & 16 \\ 818 & 345 \end{array}\right),\left(\begin{array}{rr} 3111 & 3112 \\ 1084 & 39 \end{array}\right),\left(\begin{array}{rr} 15 & 8 \\ 448 & 1409 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 16 \\ 4 & 2353 \end{array}\right),\left(\begin{array}{rr} 3105 & 16 \\ 3104 & 17 \end{array}\right)$
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | nonsplit | ss | ord | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | - | 1 | 1,1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 585f
consists of 8 curves linked by isogenies of
degrees dividing 16.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | 2.0.3.1-12675.2-b4 |
$4$ | \(\Q(\sqrt{3}, \sqrt{65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-65})\) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{13})\) | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.370150560000.10 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.12960000.1 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.390971529.1 | \(\Z/2\Z \oplus \Z/16\Z\) | Not in database |
$8$ | 8.2.3162184666875.6 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$16$ | 16.0.137011437068313600000000.1 | \(\Z/4\Z \oplus \Z/8\Z\) | Not in database |
$16$ | 16.0.3913183654108104729600000000.3 | \(\Z/2\Z \oplus \Z/16\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.