Properties

Label 5850b
Number of curves $4$
Conductor $5850$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5850b have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5850b do not have complex multiplication.

Modular form 5850.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - q^{13} - 4 q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5850b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5850.z4 5850b1 \([1, -1, 0, 2433, -36659]\) \(3774555693/3515200\) \(-1482975000000\) \([2]\) \(13824\) \(1.0226\) \(\Gamma_0(N)\)-optimal
5850.z3 5850b2 \([1, -1, 0, -12567, -321659]\) \(520300455507/193072360\) \(81452401875000\) \([2]\) \(27648\) \(1.3692\)  
5850.z2 5850b3 \([1, -1, 0, -56067, -5152159]\) \(-63378025803/812500\) \(-249881835937500\) \([2]\) \(41472\) \(1.5720\)  
5850.z1 5850b4 \([1, -1, 0, -899817, -328308409]\) \(261984288445803/42250\) \(12993855468750\) \([2]\) \(82944\) \(1.9185\)