Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
585.a1 |
585g1 |
585.a |
585g |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{7} \cdot 5 \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.099517256$ |
$1$ |
|
$10$ |
$96$ |
$-0.331278$ |
$-4096/195$ |
$0.83662$ |
$3.03400$ |
$[0, 0, 1, -3, 18]$ |
\(y^2+y=x^3-3x+18\) |
390.2.0.? |
$[(-1, 4)]$ |
585.b1 |
585e1 |
585.b |
585e |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{13} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$672$ |
$0.741874$ |
$-762549907456/24024195$ |
$0.97132$ |
$5.33689$ |
$[0, 0, 1, -1713, -28022]$ |
\(y^2+y=x^3-1713x-28022\) |
390.2.0.? |
$[]$ |
585.c1 |
585i1 |
585.c |
585i |
$1$ |
$1$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{9} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.037671158$ |
$1$ |
|
$16$ |
$672$ |
$0.674158$ |
$-32278933504/27421875$ |
$0.96372$ |
$4.97406$ |
$[0, 0, 1, -597, 8820]$ |
\(y^2+y=x^3-597x+8820\) |
390.2.0.? |
$[(8, 67)]$ |
585.d1 |
585a2 |
585.d |
585a |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{9} \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.395894122$ |
$1$ |
|
$8$ |
$384$ |
$0.652084$ |
$260549802603/4225$ |
$0.95689$ |
$5.67730$ |
$[1, -1, 1, -3593, 83782]$ |
\(y^2+xy+y=x^3-x^2-3593x+83782\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[(28, 53)]$ |
585.d2 |
585a1 |
585.d |
585a |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{9} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$0.791788244$ |
$1$ |
|
$7$ |
$192$ |
$0.305511$ |
$-57960603/8125$ |
$0.86399$ |
$4.39131$ |
$[1, -1, 1, -218, 1432]$ |
\(y^2+xy+y=x^3-x^2-218x+1432\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[(8, 8)]$ |
585.e1 |
585b2 |
585.e |
585b |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{9} \cdot 5^{3} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$390$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$144$ |
$0.284592$ |
$-303464448/1625$ |
$0.94004$ |
$4.61853$ |
$[0, 0, 1, -378, -2842]$ |
\(y^2+y=x^3-378x-2842\) |
3.8.0-3.a.1.1, 390.16.0.? |
$[]$ |
585.e2 |
585b1 |
585.e |
585b |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{3} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$390$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$48$ |
$-0.264715$ |
$7077888/10985$ |
$1.00193$ |
$3.07430$ |
$[0, 0, 1, 12, -21]$ |
\(y^2+y=x^3+12x-21\) |
3.8.0-3.a.1.2, 390.16.0.? |
$[]$ |
585.f1 |
585d1 |
585.f |
585d |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{3} \cdot 5^{3} \cdot 13 \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$390$ |
$16$ |
$0$ |
$0.766940191$ |
$1$ |
|
$8$ |
$48$ |
$-0.264715$ |
$-303464448/1625$ |
$0.94004$ |
$3.58399$ |
$[0, 0, 1, -42, 105]$ |
\(y^2+y=x^3-42x+105\) |
3.8.0-3.a.1.2, 390.16.0.? |
$[(5, 4)]$ |
585.f2 |
585d2 |
585.f |
585d |
$2$ |
$3$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{9} \cdot 5 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$390$ |
$16$ |
$0$ |
$0.255646730$ |
$1$ |
|
$4$ |
$144$ |
$0.284592$ |
$7077888/10985$ |
$1.00193$ |
$4.10884$ |
$[0, 0, 1, 108, 560]$ |
\(y^2+y=x^3+108x+560\) |
3.8.0-3.a.1.1, 390.16.0.? |
$[(30, 175)]$ |
585.g1 |
585f7 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{7} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.171 |
2B |
$6240$ |
$768$ |
$13$ |
$1.386213803$ |
$1$ |
|
$2$ |
$3072$ |
$1.738724$ |
$242970740812818720001/24375$ |
$1.04119$ |
$8.40151$ |
$[1, -1, 0, -1170000, 487402461]$ |
\(y^2+xy=x^3-x^2-1170000x+487402461\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.3, 12.12.0-4.c.1.1, 16.48.0-16.g.1.4, $\ldots$ |
$[(588, 1281)]$ |
585.g2 |
585f5 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{8} \cdot 5^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.108 |
2Cs |
$3120$ |
$768$ |
$13$ |
$2.772427606$ |
$1$ |
|
$4$ |
$1536$ |
$1.392149$ |
$59319456301170001/594140625$ |
$1.01234$ |
$7.09607$ |
$[1, -1, 0, -73125, 7629336]$ |
\(y^2+xy=x^3-x^2-73125x+7629336\) |
2.6.0.a.1, 4.12.0.b.1, 8.48.0-8.i.1.8, 12.24.0-4.b.1.1, 24.96.0-24.bb.1.4, $\ldots$ |
$[(120, 696)]$ |
585.g3 |
585f8 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{7} \cdot 5^{16} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.110 |
2B |
$6240$ |
$768$ |
$13$ |
$5.544855213$ |
$1$ |
|
$0$ |
$3072$ |
$1.738724$ |
$-55150149867714721/5950927734375$ |
$1.01425$ |
$7.11146$ |
$[1, -1, 0, -71370, 8011575]$ |
\(y^2+xy=x^3-x^2-71370x+8011575\) |
2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 12.12.0-4.c.1.1, 16.48.0-16.g.1.8, $\ldots$ |
$[(519/2, 7167/2)]$ |
585.g4 |
585f3 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5^{4} \cdot 13^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.42 |
2Cs |
$3120$ |
$768$ |
$13$ |
$1.386213803$ |
$1$ |
|
$6$ |
$768$ |
$1.045576$ |
$15551989015681/1445900625$ |
$0.97384$ |
$5.80181$ |
$[1, -1, 0, -4680, 114075]$ |
\(y^2+xy=x^3-x^2-4680x+114075\) |
2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.4, 12.48.0-4.b.1.1, 24.96.0-24.b.1.12, $\ldots$ |
$[(78, 429)]$ |
585.g5 |
585f2 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{14} \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.4 |
2Cs |
$3120$ |
$768$ |
$13$ |
$2.772427606$ |
$1$ |
|
$6$ |
$384$ |
$0.699002$ |
$168288035761/27720225$ |
$1.01793$ |
$5.09143$ |
$[1, -1, 0, -1035, -10584]$ |
\(y^2+xy=x^3-x^2-1035x-10584\) |
2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 12.24.0-4.b.1.3, 16.48.0-8.i.1.3, $\ldots$ |
$[(40, 84)]$ |
585.g6 |
585f1 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{10} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.3 |
2B |
$6240$ |
$768$ |
$13$ |
$5.544855213$ |
$1$ |
|
$3$ |
$192$ |
$0.352429$ |
$147281603041/5265$ |
$0.93867$ |
$5.07050$ |
$[1, -1, 0, -990, -11745]$ |
\(y^2+xy=x^3-x^2-990x-11745\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.2, 16.24.0.g.1, $\ldots$ |
$[(238, 3513)]$ |
585.g7 |
585f4 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{22} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.3 |
2B |
$6240$ |
$768$ |
$13$ |
$5.544855213$ |
$1$ |
|
$0$ |
$768$ |
$1.045576$ |
$1023887723039/2798036865$ |
$1.05353$ |
$5.58110$ |
$[1, -1, 0, 1890, -61479]$ |
\(y^2+xy=x^3-x^2+1890x-61479\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.2, 16.24.0.g.1, $\ldots$ |
$[(115/2, 897/2)]$ |
585.g8 |
585f6 |
585.g |
585f |
$8$ |
$16$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{8} \cdot 5^{2} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.48.0.196 |
2B |
$6240$ |
$768$ |
$13$ |
$0.693106901$ |
$1$ |
|
$4$ |
$1536$ |
$1.392149$ |
$24487529386319/183539412225$ |
$1.01498$ |
$6.26242$ |
$[1, -1, 0, 5445, 533250]$ |
\(y^2+xy=x^3-x^2+5445x+533250\) |
2.3.0.a.1, 4.12.0.d.1, 8.48.0-8.q.1.4, 12.24.0-4.d.1.1, 24.96.0-24.be.2.11, $\ldots$ |
$[(-30, 600)]$ |
585.h1 |
585h1 |
585.h |
585h |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{6} \cdot 5 \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1560$ |
$48$ |
$0$ |
$1.638175766$ |
$1$ |
|
$3$ |
$48$ |
$-0.412309$ |
$117649/65$ |
$0.95681$ |
$2.86696$ |
$[1, -1, 0, -9, 0]$ |
\(y^2+xy=x^3-x^2-9x\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.4, 130.6.0.?, 260.24.0.?, $\ldots$ |
$[(4, 2)]$ |
585.h2 |
585h2 |
585.h |
585h |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{6} \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1560$ |
$48$ |
$0$ |
$0.819087883$ |
$1$ |
|
$4$ |
$96$ |
$-0.065735$ |
$6967871/4225$ |
$0.89914$ |
$3.50751$ |
$[1, -1, 0, 36, -27]$ |
\(y^2+xy=x^3-x^2+36x-27\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.1, 260.12.0.?, 520.24.0.?, $\ldots$ |
$[(4, 11)]$ |
585.i1 |
585c2 |
585.i |
585c |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( 3^{3} \cdot 5^{2} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$128$ |
$0.102778$ |
$260549802603/4225$ |
$0.95689$ |
$4.64277$ |
$[1, -1, 0, -399, -2970]$ |
\(y^2+xy=x^3-x^2-399x-2970\) |
2.3.0.a.1, 12.6.0.a.1, 52.6.0.e.1, 156.12.0.? |
$[]$ |
585.i2 |
585c1 |
585.i |
585c |
$2$ |
$2$ |
\( 3^{2} \cdot 5 \cdot 13 \) |
\( - 3^{3} \cdot 5^{4} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64$ |
$-0.243795$ |
$-57960603/8125$ |
$0.86399$ |
$3.35677$ |
$[1, -1, 0, -24, -45]$ |
\(y^2+xy=x^3-x^2-24x-45\) |
2.3.0.a.1, 12.6.0.b.1, 52.6.0.e.1, 78.6.0.?, 156.12.0.? |
$[]$ |