Show commands for:
SageMath
sage: E = EllipticCurve("k1")
sage: E.isogeny_class()
Elliptic curves in class 58443.k
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
58443.k1 | 58443n2 | [0, 1, 1, -85169, 9538139] | [] | 186624 | |
58443.k2 | 58443n1 | [0, 1, 1, -2009, -14866] | [] | 62208 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 58443.k have rank \(1\).
Complex multiplication
The elliptic curves in class 58443.k do not have complex multiplication.Modular form 58443.2.a.k
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.