Properties

Label 5824.t
Number of curves $1$
Conductor $5824$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 5824.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5824.t1 5824be1 \([0, 0, 0, 4, -2]\) \(110592/91\) \(-5824\) \([]\) \(320\) \(-0.58976\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5824.t1 has rank \(0\).

Complex multiplication

The elliptic curves in class 5824.t do not have complex multiplication.

Modular form 5824.2.a.t

sage: E.q_eigenform(10)
 
\(q + 3 q^{5} + q^{7} - 3 q^{9} - 6 q^{11} + q^{13} + 4 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display