Properties

Label 58.b
Number of curves $2$
Conductor $58$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 58.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 58.b do not have complex multiplication.

Modular form 58.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + q^{5} - q^{6} - 2 q^{7} + q^{8} - 2 q^{9} + q^{10} - 3 q^{11} - q^{12} - q^{13} - 2 q^{14} - q^{15} + q^{16} + 8 q^{17} - 2 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 58.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
58.b1 58b2 \([1, 1, 1, -455, -3951]\) \(-10418796526321/82044596\) \(-82044596\) \([]\) \(20\) \(0.34716\)  
58.b2 58b1 \([1, 1, 1, 5, 9]\) \(13651919/29696\) \(-29696\) \([5]\) \(4\) \(-0.45755\) \(\Gamma_0(N)\)-optimal