Properties

Label 5780e
Number of curves $4$
Conductor $5780$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5780e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 2 T + 3 T^{2}\) 1.3.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5780e do not have complex multiplication.

Modular form 5780.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{3} + q^{5} - 2 q^{7} + q^{9} + 2 q^{13} + 2 q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5780e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5780.f3 5780e1 \([0, -1, 0, -385, 2130]\) \(16384/5\) \(1931005520\) \([2]\) \(2304\) \(0.48666\) \(\Gamma_0(N)\)-optimal
5780.f4 5780e2 \([0, -1, 0, 1060, 13112]\) \(21296/25\) \(-154480441600\) \([2]\) \(4608\) \(0.83323\)  
5780.f1 5780e3 \([0, -1, 0, -11945, -498418]\) \(488095744/125\) \(48275138000\) \([2]\) \(6912\) \(1.0360\)  
5780.f2 5780e4 \([0, -1, 0, -10500, -625000]\) \(-20720464/15625\) \(-96550276000000\) \([2]\) \(13824\) \(1.3825\)