Properties

Label 5776.o
Number of curves $1$
Conductor $5776$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("o1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5776.o

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5776.o1 5776d1 \([0, 1, 0, -424, 3223]\) \(1462911232\) \(5776\) \([]\) \(1008\) \(0.036767\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5776.o1 has rank \(0\).

Complex multiplication

The elliptic curves in class 5776.o do not have complex multiplication.

Modular form 5776.2.a.o

sage: E.q_eigenform(10)
 
\(q + q^{3} + 3q^{5} - 2q^{9} + 4q^{11} + 5q^{13} + 3q^{15} - 5q^{17} + O(q^{20})\)  Toggle raw display