Properties

Label 5776.h
Number of curves $1$
Conductor $5776$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5776.h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5776.h1 5776a1 \([0, -1, 0, -153184, -23025409]\) \(1462911232\) \(271737008656\) \([]\) \(19152\) \(1.5090\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5776.h1 has rank \(1\).

Complex multiplication

The elliptic curves in class 5776.h do not have complex multiplication.

Modular form 5776.2.a.h

sage: E.q_eigenform(10)
 
\(q - q^{3} + 3q^{5} - 2q^{9} + 4q^{11} - 5q^{13} - 3q^{15} - 5q^{17} + O(q^{20})\)  Toggle raw display