Show commands for:
SageMath
sage: E = EllipticCurve("f1")
sage: E.isogeny_class()
Elliptic curves in class 5775f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
5775.y2 | 5775f1 | [0, -1, 1, -223508, 47704043] | [] | 144000 | \(\Gamma_0(N)\)-optimal |
5775.y1 | 5775f2 | [0, -1, 1, -669758, -3988338457] | [] | 720000 |
Rank
sage: E.rank()
The elliptic curves in class 5775f have rank \(0\).
Complex multiplication
The elliptic curves in class 5775f do not have complex multiplication.Modular form 5775.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.