Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+y=x^3+x^2-18x+24\)
|
(homogenize, simplify) |
\(y^2z+yz^2=x^3+x^2z-18xz^2+24z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-23760x+1414800\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(3, 2\right)\)
|
$\hat{h}(P)$ | ≈ | $0.091525914418869643561449495435$ |
Integral points
\( \left(-2, 7\right) \), \( \left(-2, -8\right) \), \( \left(-1, 6\right) \), \( \left(-1, -7\right) \), \( \left(2, 0\right) \), \( \left(2, -1\right) \), \( \left(3, 2\right) \), \( \left(3, -3\right) \), \( \left(198, 2792\right) \), \( \left(198, -2793\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 575 \) | = | $5^{2} \cdot 23$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-2875 $ | = | $-1 \cdot 5^{3} \cdot 23 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{5451776}{23} \) | = | $-1 \cdot 2^{12} \cdot 11^{3} \cdot 23^{-1}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $-0.48170990648481329690021184163\dots$ | ||
Stable Faltings height: | $-0.88406938459333839055040167494\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.091525914418869643561449495435\dots$ | ||
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
| |||
Real period: | $4.5445233981135026396085686713\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 2 $ = $ 2\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 0.83188331922057420151211388575 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 56 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$5$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
$23$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image of the adelic Galois representation has level $230$, index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 229 & 2 \\ 228 & 3 \end{array}\right),\left(\begin{array}{rr} 51 & 2 \\ 51 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 229 & 0 \end{array}\right),\left(\begin{array}{rr} 47 & 2 \\ 47 & 3 \end{array}\right)$
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ss | ord | add | ord | ss | ord | ord | ord | split | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 1,2 | 1 | - | 1 | 1,1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0,0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has no rational isogenies. Its isogeny class 575e consists of this curve only.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.460.1 | \(\Z/2\Z\) | Not in database |
$6$ | 6.0.24334000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$8$ | 8.2.9562691671875.1 | \(\Z/3\Z\) | Not in database |
$12$ | deg 12 | \(\Z/4\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.