Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+528406x+56766798\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+528406xz^2+56766798z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+684813501x+2638239521598\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(304639/1089, 535909849/35937)$ | $10.216748031714244615272566805$ | $\infty$ |
| $(-421/4, 421/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 57498 \) | = | $2 \cdot 3 \cdot 7 \cdot 37^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-10823718671274379122$ | = | $-1 \cdot 2 \cdot 3^{16} \cdot 7^{2} \cdot 37^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{6359387729183}{4218578658} \) | = | $2^{-1} \cdot 3^{-16} \cdot 7^{-2} \cdot 97^{3} \cdot 191^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3411337400198053857341349507$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.53567478369769316355008711518$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.083141850233532$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.666858459887422$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $10.216748031714244615272566805$ |
|
| Real period: | $\Omega$ | ≈ | $0.14284001061136397419135546883$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.9187207945273893959370176501 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.918720795 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.142840 \cdot 10.216748 \cdot 8}{2^2} \\ & \approx 2.918720795\end{aligned}$$
Modular invariants
Modular form 57498.2.a.f
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1548288 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $3$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $37$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.204 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4144 = 2^{4} \cdot 7 \cdot 37 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 4129 & 16 \\ 4128 & 17 \end{array}\right),\left(\begin{array}{rr} 445 & 2368 \\ 2368 & 1925 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4031 & 0 \\ 0 & 4143 \end{array}\right),\left(\begin{array}{rr} 2332 & 2553 \\ 1739 & 1962 \end{array}\right),\left(\begin{array}{rr} 1814 & 2553 \\ 1221 & 1962 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 4140 & 4141 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 4046 & 4131 \end{array}\right)$.
The torsion field $K:=\Q(E[4144])$ is a degree-$470208872448$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4144\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1369 = 37^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 19166 = 2 \cdot 7 \cdot 37^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 8214 = 2 \cdot 3 \cdot 37^{2} \) |
| $37$ | additive | $686$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 57498b
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 42a6, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{74}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-37}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-2}, \sqrt{-37})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-14}, \sqrt{-37})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{7}, \sqrt{-37})\) | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.7860800978944.3 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.294902861725696.30 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | ord | nonsplit | ord | ord | ord | ord | ord | ord | ss | add | ord | ord | ss |
| $\lambda$-invariant(s) | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | - | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.