sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 5733.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1 |
7 | 1 |
13 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+T+2T2 |
1.2.b
|
5 |
1+5T2 |
1.5.a
|
11 |
1−3T+11T2 |
1.11.ad
|
17 |
1+7T+17T2 |
1.17.h
|
19 |
1+7T+19T2 |
1.19.h
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1−5T+29T2 |
1.29.af
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 5733.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1771)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 5733.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
5733.c1 |
5733d1 |
[1,−1,1,−965,−11294] |
−56723625/13 |
−22754277 |
[] |
1920 |
0.40326
|
Γ0(N)-optimal |
5733.c2 |
5733d2 |
[1,−1,1,5650,475570] |
11397810375/62748517 |
−109830549012093 |
[] |
13440 |
1.3762
|
|