Properties

Label 5733.c
Number of curves 22
Conductor 57335733
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5733.c have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
3311
7711
13131+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
22 1+T+2T2 1 + T + 2 T^{2} 1.2.b
55 1+5T2 1 + 5 T^{2} 1.5.a
1111 13T+11T2 1 - 3 T + 11 T^{2} 1.11.ad
1717 1+7T+17T2 1 + 7 T + 17 T^{2} 1.17.h
1919 1+7T+19T2 1 + 7 T + 19 T^{2} 1.19.h
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 15T+29T2 1 - 5 T + 29 T^{2} 1.29.af
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5733.c do not have complex multiplication.

Modular form 5733.2.a.c

Copy content sage:E.q_eigenform(10)
 
qq2q4+3q8+3q11q13q167q177q19+O(q20)q - q^{2} - q^{4} + 3 q^{8} + 3 q^{11} - q^{13} - q^{16} - 7 q^{17} - 7 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the LMFDB numbering.

(1771)\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5733.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5733.c1 5733d1 [1,1,1,965,11294][1, -1, 1, -965, -11294] 56723625/13-56723625/13 22754277-22754277 [][] 19201920 0.403260.40326 Γ0(N)\Gamma_0(N)-optimal
5733.c2 5733d2 [1,1,1,5650,475570][1, -1, 1, 5650, 475570] 11397810375/6274851711397810375/62748517 109830549012093-109830549012093 [][] 1344013440 1.37621.3762