# Properties

 Label 570.k Number of curves $4$ Conductor $570$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("k1")

sage: E.isogeny_class()

## Elliptic curves in class 570.k

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
570.k1 570k4 [1, 0, 0, -463231, 77449961]  17280
570.k2 570k2 [1, 0, 0, -414991, 102863225]  5760
570.k3 570k1 [1, 0, 0, -25871, 1614201]  2880 $$\Gamma_0(N)$$-optimal
570.k4 570k3 [1, 0, 0, 85489, 8420985]  8640

## Rank

sage: E.rank()

The elliptic curves in class 570.k have rank $$0$$.

## Complex multiplication

The elliptic curves in class 570.k do not have complex multiplication.

## Modular form570.2.a.k

sage: E.q_eigenform(10)

$$q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + 2q^{7} + q^{8} + q^{9} - q^{10} + 6q^{11} + q^{12} - 4q^{13} + 2q^{14} - q^{15} + q^{16} - 6q^{17} + q^{18} + q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 