Show commands for:
SageMath
sage: E = EllipticCurve("i1")
sage: E.isogeny_class()
Elliptic curves in class 570.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
570.i1 | 570i4 | [1, 1, 1, -492480, 132819117] | [2] | 3840 | |
570.i2 | 570i3 | [1, 1, 1, -31160, 2011565] | [2] | 3840 | |
570.i3 | 570i2 | [1, 1, 1, -30780, 2065677] | [2, 2] | 1920 | |
570.i4 | 570i1 | [1, 1, 1, -1900, 32525] | [4] | 960 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 570.i have rank \(0\).
Complex multiplication
The elliptic curves in class 570.i do not have complex multiplication.Modular form 570.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.