Properties

Label 570.e2
Conductor $570$
Discriminant $311647500$
j-invariant \( \frac{9912050027641}{311647500} \)
CM no
Rank $1$
Torsion structure \(\Z/{4}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([1, 0, 1, -448, 3506])
 
gp: E = ellinit([1, 0, 1, -448, 3506])
 
magma: E := EllipticCurve([1, 0, 1, -448, 3506]);
 

\(y^2+xy+y=x^3-448x+3506\) Copy content Toggle raw display

Mordell-Weil group structure

$\Z\times \Z/{4}\Z$

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

$P$ =  \(\left(7, 23\right)\) Copy content Toggle raw display
$\hat{h}(P)$ ≈  $0.25163023607730268394667346034$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(25, 77\right) \) Copy content Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-23, 53\right) \), \( \left(-23, -31\right) \), \( \left(-20, 77\right) \), \( \left(-20, -58\right) \), \( \left(-5, 77\right) \), \( \left(-5, -73\right) \), \( \left(7, 23\right) \), \( \left(7, -31\right) \), \( \left(10, 2\right) \), \( \left(10, -13\right) \), \( \left(15, 7\right) \), \( \left(15, -23\right) \), \( \left(16, 14\right) \), \( \left(16, -31\right) \), \( \left(25, 77\right) \), \( \left(25, -103\right) \), \( \left(70, 527\right) \), \( \left(70, -598\right) \), \( \left(115, 1157\right) \), \( \left(115, -1273\right) \), \( \left(1375, 50297\right) \), \( \left(1375, -51673\right) \) Copy content Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 570 \)  =  $2 \cdot 3 \cdot 5 \cdot 19$
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: $311647500 $  =  $2^{2} \cdot 3^{8} \cdot 5^{4} \cdot 19 $
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{9912050027641}{311647500} \)  =  $2^{-2} \cdot 3^{-8} \cdot 5^{-4} \cdot 19^{-1} \cdot 21481^{3}$
Endomorphism ring: $\Z$
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: $0.40468748195945160696423274870\dots$
Stable Faltings height: $0.40468748195945160696423274870\dots$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: $1$
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: $0.25163023607730268394667346034\dots$
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: $1.7120662754682704149884599857\dots$
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: $ 64 $  = $ 2\cdot2^{3}\cdot2^{2}\cdot1 $
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: $4$
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: $1$ (exact)
sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Special value: $ L'(E,1) $ ≈ $ 1.7232305643042768528945848530 $

Modular invariants

Modular form   570.2.a.e

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 4 q^{7} - q^{8} + q^{9} - q^{10} - 4 q^{11} + q^{12} - 6 q^{13} + 4 q^{14} + q^{15} + q^{16} - 6 q^{17} - q^{18} - q^{19} + O(q^{20}) \) Copy content Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 512
$ \Gamma_0(N) $-optimal: no
Manin constant: 1

Local data

This elliptic curve is semistable. There are 4 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $2$ $I_{2}$ Non-split multiplicative 1 1 2 2
$3$ $8$ $I_{8}$ Split multiplicative -1 1 8 8
$5$ $4$ $I_{4}$ Split multiplicative -1 1 4 4
$19$ $1$ $I_{1}$ Non-split multiplicative 1 1 1 1

Galois representations

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.12.0.7

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type nonsplit split split ord ord ord ord nonsplit ord ord ord ord ord ord ord
$\lambda$-invariant(s) 1 4 2 1 1 1 1 1 1 1 1 1 1 1 1
$\mu$-invariant(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 570.e consists of 4 curves linked by isogenies of degrees dividing 4.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{19}) \) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ 4.4.30400.1 \(\Z/8\Z\) Not in database
$8$ 8.0.192699928576.2 \(\Z/4\Z \times \Z/4\Z\) Not in database
$8$ 8.0.1926999285760000.23 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.8.5337948160000.2 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.2.230859741870000.4 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/16\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.